Passkeys Cheat Sheet - Overview

Everything you need to know about WebAuthn and passkeys

Ceremonies

Authentication with passkeys is based on the two processes, also called ceremonies, registration (aka the “attestation phase”) and login (aka the “assertion phase”).
Each phase requires a random challenge generated by the server, which is signed by the authenticator and sent back to the WebAuthn server to verify the user.

Registration (attestation) Login (assertion)

R TR T S TN T

= (2] oI
dh st o= [==
POST api/passkeys/registerStart POST api/passkeys/loginStart
SaTDIRDNEGH (username) (username)
Username Username
startReqistratioq (publit;Key publicKeyCredential startAutljenticate(publif:Key publicKeyCredential
CredentialCreationOptions) CreationOptions’ CredentialRequestOptions) ’ RequestOptions'
o} & - ° L]
é POST api/passkey/registerFinish é POST api/passkey/loginFinish
Face / (attestation)? Face / (assertion)?
fingerprint scan fingerprint scan s “
VerifyAndSave Verify
(attestation) (assertion)
Sign up successful Login successful
1) The cryptographic challenge is created by the WebAuthn server and passed to the client via the Options
2) The challenge is signed by the authenticator and returned to the server via the attestation / assertion objects
° ° ° °
PublicKeyCredentialCreationOptions
"PublicKeyCredentialCreationOptions": {
2.3 c:l"{ . " ., PublicKeyCredentialCreationOptions is the central object of the attestation phase (Registration).
Rl o ey v ., It is created by and returned from the WebAuthn server, containing these attributes:
name": "Corbado Passkeys Demo
}, « rp: Identifies the Relying Party (= the server looking to authenticate the user), usually the ID is the server domain.

"user": {

"displayName": "john.doe", « user: Contains data about the user account requesting attestation. The ID is a byte sequence chosen by the Relying

"id": "dXNyLZ...DU10Tc", Party, that must not contain personal information. The username or e-mail address is saved instead in the name or
"name": "john@doe.com" displayName attribute.

}y , « challenge: A randomly generated base64URL encoded BufferSource that needs to be signed by the authenticator.
"challenge": "888fix4Bus...pHHr3Y",

"pubKeyCredParams": |[» pubKeyCredParams: Indicates which algorithms are supported for the encryption of the keys. It's recommended to
{ stick to the default values.
::219"5' 5 e b « timeout: Optional time in milliseconds for the client to wait for the call to complete.
ype': Tpublic—key - . . .
, » excludeCredentials: Optional list of credentials to limit the creation of multiple passkeys on one device.
{ . » authenticatorSelection: Optional selection of the used authenticator for the method, e.g. whether a residentKey is
":19 i ‘35751_ . required. See the the next page of the cheat sheet for more information.
ype : “public—key -
} « attestation: Can be used to request that the attestation object is passed on to the Relying Party in a specific form.
1, Possible values are “none” (default), “indirect”, “direct” and “enterprise”.
"excludeCredentials": [, « extensions: Optional request(s) for additional processing, such as specific return values. e.g.

"authenticatorSelection": {
"authenticatorAttachment": "platform"”,
"residentKey": "required",
"userVerification": "required"

}l

"attestation": "none",

"extensions": []

e credProbs requests information on whether the created credential is discoverable
« prf allows the Relying Party to use outputs from a pseudo-random function (PRF) associated with a credential

PublicKeyCredentialRequestOptions

PublicKeyCredentialRequestOptions is the central object of the assertion phase (Login).

"publicKeyCredentialRequestOptions": { It is created by and returned from the server, containing these attributes:

"challenge": "pT7HMA-...dFPHk",
"timeout": 500, » challenge, timeout, extensions: see above

“rpld": "passkeys.eu”, « rpld: The identifier of the Relying Party for the assertion request, usually its domain.

"userVerification": "preferred", C
"allowCredentials": [], « allowCredentials: Optional list of credentials that are allowed for authentication, indicating the caller’s preference by

nextensions": [] descending order. This list would be filled with PublicKeyCredentialDescriptors.

} userVerification: Optional value to specify requirements for user verification during the operation.
¥ Possible values are “preferred” (default), “required” or “discouraged”.

Attestation

During the Registration Ceremony, the Authenticator returns this Registration Response. (You can try this yourself in Passkeys Debugger)

The attestationObject is a CBOR encoded object, R

L containing information about the newly created credentials,

"root": {
"id": “QFP1QVypLmmx71e0tmS3IfCFky@", the public key and other relevant data

"rawld": "QFP1QVypLmmx71e0tmS3IfCFky@®",

-

rf:g:g;:afdénﬂbjec S0, ¢ o fmt is typically evaluated to “none” for passkeys
z szope R e —— - iabie lgth ! presee (B0
"fﬁ:;; "t'non:;, e attStmt |S empty for paSSkeyS and f|”ed for other RPID hash |F%A?S | COUNTER ‘ ATTESTED CRED. DATA | EXTENSIONS |
"a mt": , . . =—— = = =
wauthData": { authenticators, e.g. hardware security keys [pr o e 0w o Tw]

"rpIdHash": "t8DGRTBf1s-BhOH2QC4041vdhe_t2_NkvM@nQWEEADCc" . s . '

“flagsts { ¢ - ¢ ' + authData is a buffer of values containing the following 7
"userPresent": tru data: arun | o [erevemac [cnevenmarumcier |
"userVerified": true T T T e o)
"backupELigible": e S T I S .

" By - : -
& :2?;:22;;::;" : RP ID hash 32 This is the SHA-256 hash of the relying party ID, e.g. passkeys.eu e ren A::S'TAT‘DN mﬁwmwz -‘-”“M “m‘r:‘:ﬁjvwwu
"extensionData": false FLAGS 1 Determining multiple information, e.g. whether the user is present. T T

Wecoaa: | “algi... | sig": ... “eccaaKeyld": ..

} ' COUNTER 4 For passkeys this is usually 0, while it's the actual sign counter for

“counter": "0Q000", sscurilyjkevey Image used from www.w3.org/TR/webauthn-2

"aaguid": "00000000-0000-0000-0000-000000R00000" , AR variable Will contain credential data if t's available in a COSE key format.

“"credentialID": "QFPLQVypLmmx71e0tmS3IfCFkya",

“credentialPublicKey": “pQECAyYgASFYIEa-1pSiQ4P...", EXTENSIONS variable These are optional extensions for authentication, read more here

"parsedCredentialPublicKey": {
"keyType': "EC2 (2}",
"algorithm": "“ES256 (-7)",

"curve": 1, parsedCredentialPublicKey contains the algorithm used for the newly created credential, encoded as a
"x": "Rr6W1lKIDg8M1bIq9mmHOzk2p2c_s7QoNKr7yMa7I8pM", _ H H o H ” “_=n “_ ” i H
gy SEAELYpThIsYN] ZZTZgHPYiaS2FRQVT8cGZ Temd 3t COSE-key with the important value “algorithm”. Only “-7” and “-257” are actually used in practice.
' ¥ Value -36 -35 -8 -7 -259 -258 -257 -39 -38 -37
;2 Name ES512 ES384 Ed25519 ES256 RS512 RS384 RS256 PS512 PS384 PS256
"clientDataJSON": {
“type": "webauthn.create", ECDSA ECDSA Ed25519 ECDSA R R RSASSA- pSASSA-PSS RSASSA-PSS RSASSA-PSS
"challenge": "AAABeB78HrIemh1jTdJICr_3QG_RMOhp", COUUE siA512 w/SHA-384 w/EADSA w/SHA-256 g RECSits PKCSlvis '\ SHA-512 w/SHA-384 w/SHA-256
"origin": "https://opotonniee.github.io", using SHA-512 using SHA-384 using SHA-256
"crossOrigin": false
Typically 2 | |
}, &
d b
"transports": [S ' -
"hybrid",
"internal"

1,
"publicKeyAlgorithm": -7,

"publicKey": "MFkwEwYHKoZIzj@CAQYIKoZIzj@DA...",
"authenticatorData": "tBDGRTBfls-BhOH2QC4041lvdhe ..."

The transports - property indicates mechanisms through which an authenticator can communicate with a
client. Some common, sample value combinations are:

1. “transports”: [“internal”, “hybrid”]: Passkeys can be used from the platform authenticator (e.g. Face ID,
Touch ID, Windows Hello) or via cross-device authentication (using QR code & Bluetooth)

2. “transports™ [“internal”]: Passkeys can be used from the platform authenticator (e.g. Face ID, Touch ID,
} Windows Hello)

}l
"type": "public-key",
"elientExtensionResults": {},
"authenticatorAttachment": "cross-platform"

3. No “transports” property set: default behavior which gives no indications

Assertion

During the Login Ceremony, the Authenticator returns this Login Response. (You can try this yourself in the Passkeys Debugger)

A “ Meaning, i Setto e “
"id": "QFP1QVypLmmx71e0tmS3IfCFky@",

"rawId": "QFP1QVypLmmx71e0tmS3IfCFky@", userPresent (UP) Physical user presence was tested by the
"type": "public-key", authenticator (e.g. by pressing a button / touching). ! Only if BOTH flags are set as true, the attestation is a 2-Factor-Authentication.
"response': { If only UP is set to true, the login is considered a Single-Factor-Authentication.

userVerified (UV) The user was verified by the authenticator, e.g. with a

"authenticatorData": { fingerprint scan or entering a PIN.
"rpIdHash": "tBDGRTBf1ls-BhOH2QC4064...",
"flags": { backupEligible (BE The credential can be backed up (e.g. in iCloud Keychain) and Possible combinations and their meanings are:
" ". 2 ackupElioibicliBE) thus be made available on another authenticator. o .) .
lUSEI’PFES':EI"It 2 « BE=0; BS = 0: The credential is a single-device credential
"gse;\{egifle'&.: The credential is currently backed up (e.g. in iCloud Keychain) + BE=1; BS = 0: The credential is a multi-device credential and currently not backed up
" e " backupStatus (BS) and thus could be available on another authenticator « BE=1; BS = 1: The credential is a multi-device credential and currently backed up
backupStatus": (e.g. with access to the same iCloud Keychain). '
"attestedData":
"extensionData":
i
; “eounter::ih The signature is used to verify that the user trying to log in, actually has the private key. It is created by
WelientDatalSON": { concatenating the authenticatorData and clientDataHash (i.e. the SHA-256 version of ClientDataJSON) and
"tﬁpﬂ: HWEba”EE{iﬁt"éBzg RS signing the result with the private key (in the authenticator).
"challenge": " il — N epe .
..Drigin..? ..https:,,ogotw“iee_qithub_io.., To verify with the public key, we concatenate authenticatorData and clientDataHash as well. If the verification
“crossOrigin": false result returns true, the authentication is successful..

}
"signature": "MEQCICx9J-G4mmL3g@TFK3uVxON5...",

"yserHandle": "YWxleCBtdWxsZXI" authenticatorData authenticatorData
Y; > [o > ..

"authenticatorAttachment": "platform" clientDataHash chentDatabash X
} 4 sign ——— Signature 4 verify ——> boolean

Private Key - PublicKey

The userHandle is the actual user_id. Read more about the user_id in the “Database Schema” on the next page.

& Corbado

https://www.corbado.com/blog/passkey-tutorial-how-to-implement-passkeys#architecture-overview-passkey-example-implementation
https://www.corbado.com/blog/passkey-tutorial-how-to-implement-passkeys#architecture-overview-passkey-example-implementation
https://www.corbado.com
https://www.w3.org/TR/webauthn-2/#dictdef-publickeycredentialcreationoptions
https://www.w3.org/TR/webauthn-2/#dictdef-publickeycredentialrequestoptions
https://www.passkeys-debugger.io
https://www.w3.org/TR/webauthn-2/#attestation-object
https://www.w3.org/TR/webauthn-2/#attestation-object
https://www.corbado.com/blog/webauthn-passkey-qr-code
https://www.passkeys-debugger.io
https://www.passkeys-debugger.io/
https://www.passkeys-debugger.io

Conditional Ul - Overview

Passkeys Cheat Sheet - Deep Dive

Everything you need to know about WebAuthn and passkeys

Conditional Ul (“passkey autofill”) displays available passkeys in a selection dropdown for the user, when a user has a resident key registered with the relying party.
It improves the usability of passkeys, but requires additional development efforts and is not available for all OS / browser combinations.

Page Load

User Operation

Login with Conditional Ul

User Client Server

2 =

il

isConditionalMediationAvailable() |
POST start Conditional Ul

PublicKeyCredentialRequestOptions’

credentials.get(PublicKeyCredential
RequestOptions + mediation: conditional)

show autofill selection

select passkey from autofill &
authenticate (e.g. Face ID, Touch ID)

POST api/passkey/loginFinish
(assertion)?

Login successful

1) The cryptographic challenge is created by the WebAuthn server and passed to the client via the Options
2) The challenge is signed by the authenticator and returned to the server via the attestation / assertion objects

Conditional Ul - Implementation

Code Example

A full, minimalistic code for a Conditional Ul method looks like this:

W W N O W B W N R

W W W w W N NN NN N NN NN R e e
AW N R @ © 00 N OO R WN R ® W0 N R W N R ®

<!DOCTYPE html>

<html lang="en">

<head>
<meta charset="UTF-8"=>
<meta name="viewport" content="width=device-width, initial-scale=1.0">
<title=Conditional UI</title>

</head=>

<body>

<input type="text" id="username" autoComplete="username webauthn" />

<script>
async function passkeylLogin() {
try {
// retrieve the request options (incl. the challenge) from the WebAuthn server

let options = await WebAuthnClient.getPublicKeyRequestOptions();

const credential = await navigator.credentials.get({
publicKey: options.publicKeyCredentialRequestOptions,
mediation: "conditional",

});

const userData = await WebAuthnClient.sendSignedChallenge(credential);
window. location.href="'/logged-in';
} catch (error) {

console. log(error);

i

passkeyLogin();
</script>

</body>
</html>

Device Compatibility

Browser

®

ubuntu

®

oS " iOS macOS

chromeOS

v v

X X X <
SIS S
C KX
X < X < "F
X X X X
X X X X

Technical Requirements

Conditional Ul only works with resident keys / discoverable credentials

Database Schema

There is no mandatory or standardized database schema for WebAuthn servers. However, this example database schema can be used to store the required information and provide all
functionalities of a WebAuthn server. Bold attributes are mandatory for a minimal viable implementation, while the others are only needed for optional, but helpful features.

Authentication-relevant data:

» Credential ID:
This is a unique ID that’s generated by the authenticator during
registration of a passkey. It should be used to look up the actual user
account that’s associated with the passkey. PK* uuid
Additionally the userHandle (from user_id) should then be compared to
validate the account used for authentication. Don’t use the user.name
attribute for comparison as it can change over time.

email

fullName

e User ID (user_id)
Unique ID specified by the Relying Party to represent a user account in
their system. It's returned as the userHandle within the assertion-object.

lastLoginDate

Metadata for display and selection of passkeys:

o User DisplayName (user.displayName)
User-friendly, readable name that is typically the full name of the user.
It's shown to the user, but not used during authentication. *

PK (Primary Key):
Unique column used to identify each record in a table.

¢ User Name (user.name)
Unique and readable name that is typically an e-mail address or a
username. It can be shown to the user, but it's not used during
authentication.

authenticatorSelection

The authenticatorSelection - object allows the WebAuthn server to request
settings from the authenticator and for the credential creation.

registrationDate

lastUpdatedDate

FK (Foreign Key):
Column refrerencing the primary key of another table.

1 {
It's recommended to provide a different server endpoint to start the Conditional Ul login. 2 M Possible Values
. . . 3 "name'": "corbado.com",
The client needs to meet multiple requirements: . B e S O
o The browser needs to support Conditional Ul (see the list above) Z b . authenticatorAttachment
i H H H “user":
» JavaScript must be enabled and the web page must provide an HTML input field e — + Platform: The authenticator is attached to the client's platform
« Timeout parameters should be disregarded 8 “name": “test-username”, and is therefore not removable.
To avoid errors, the server should first test the client’s avallablllty with this function: 9 "displayName": "test-username” « Cross-platform: TheAauthentAicator is not bound to the client's platform and
10 ¥ can be used on multiple devices.
3 // Availability of ‘window.PublicKeyCredential' means WebAuthn is usable. 11 Nenelienges: “mnafljsapd) Ca TtasatidCo0ynRz\-x-0
12 "pubKeyCredParams": [
4 Af 13 {
5 window.PublicKeyCredential && 14 “type": “public-key", residentKey
6 PublicKeyCredential.isConditionalMediationAvailable " L * Required: The authenticator must create a resident key
.) g 18 }' (if not possible the operation should fail).
17 {
o i . . “types "public-key" * Preferred: The authenticator should try to create a resident key
8 // Check if conditional mediation is available. e B i v ' (if not possible it should create a non-resident key)
9 const isCMA = await PublicKeyCredential.isConditionalMediationAvailable(); =3) « Discouraged: The authenticator must create a non-resident key
10 if (isCMA) { 21 ts (if not possible the operation should fail).
11 // Call WebAuthn authentication start endpoint 22 YiAeoutizicnens,
23 "excludeCredentials": [I],
12 24 "authenticatorSelection": {
13 let options = await WebAuthnClient.getPublicKeyRequestOptions(); 25 "authenticatorAttachment”: “platfarm”, user\Verification
14 28 "residentKey;: “prefersed; * Required: The operation must verify the user.
27 "requireResidentKey": false, . .
15 const credential = await navigator.credentials.get({ 28 “userverification": “preferred" * Preferred: The operation should verify the user,
i i but can proceed without it. (standard option)
16 publicKey: options.publicKeyCredentialRequestOptions, 29 H
i - 30 “attestation": "none", * Discouraged: The operation should not verify the user.
17 mediation: "conditional", .
31 extensions": { ! Warning:
18 i 32 icredProps™ ‘rrue If set to ”Preferred” the authenticator may skip the user verification in the
19 /% 33 h authentication process (Read more in this article).
34}
20
21 */
22 g
22}

Autocomplete Token in Input Fields

Resident Keys vs. Non-Resident Keys

There are two types of passkeys that differ in their storage and retrieval mechanisms:

* Resident Keys (also called Discoverable Credential)

The input field should receive an HTML autofill token, that signals the client to populate
passkeys to the ongoing request. Besides passkeys, the autofill tokens can be paired
with existing tokens, e.g. usernames and passwords:

1
2
3
4

<label for="name">Username:</label>
<input type="text" name="name" autocomplete="username webauthn">
<label for="password">Password:</label>

<input type="password" name="password" autocomplete="current-password webauthn">

& Corbado

Resident keys are stored on the authenticator and retrieved during authentication.
This way the client can “discover” a list of possible keys, which is why Conditional

Ul requires resident keys.

* Non-Resident Key (also called Non-Discoverable Credential)

In case of non-resident keys, the credential ID is stored on the server and not on
the authenticator. During each authentication, the authenticator derives the private
key from a seed within the credential ID and an internal master key that is saved on

the authenticator.

varchar(255)
varchar(50)
varchar(25)
datetime
datetime

datetime

| FK*
user.name

user.displayName

Relying

IIIIIIIllliigiiiiiiallllllllll

id int

et varchar(255) Stored within the passkey as user_id and
later returned as userHandle.

credentialld text Used to identify the credential during authentication

publicKey text Credential public key

aaguid varchar(25) Identifies the authenticator type

creationDate datetime

b int Indicates whether credential is eligible for a backup (=1)

e or whether it's a device-bound passkey (0)

bs int Credential is backed up (=1, e.g. synced to cloud account
and can therefore be used on connected devices.)

lastUsedDate datetime

lastUpdatedDate datetime

status bool

Party ID

The Relying Party ID (rpID) is a domain stored within the passkey, ensuring the
passkey only works for the correct domain (browser URL, see this article for native
apps). During authentication, the rpID is checked against the browser URL and only
allowed in these two cases:

1. The browser URL matches precisely the rpID OR
2. The browser URL is a subdomain that matches the rpID and the parent domain is
not on the Public Suffix List

e.g.

Relying Party ID originalHost (= Browser URL) Allowed ?

“0.0.0.0"
“0x10203"
“[0:1]
“example.com”
“example.com”
“example.com.”
“example.com”
“com”

“example”

“compute.amazonaws.com”

“example.compute.amazonaws.com”

“amazonaws.com”

“amazonaws.com”

0.0.0.0

0.1.2.3

1

example.com

example.com.

example.com

www.example.com

example.com

example
example.compute.amazonaws.com
www.example.compute.amazonaws.com
www.example.compute.amazonaws.com

test.amazonaws.com

Helpful Tools

These are helpful tools that you can access by clicking on their title.

Passkeys Debugger:

Passkey Glossary:

Device Log:

Chrome Passkeys:

(<N < < I <]

X X X 8 X 8 X X

<]

the trailing dot is
relevant in both cases

example.com is on the
public suffix list

*.compute.amazonaws.com
/s on the public suffix list

Tool for Debugging the WebAuthn Response as JSON and
testing WebAuthn operations with different options..

Explanation of passkey-related terms & concepts.

Log of your WebAuthn operations (only on Chrome: chrome://
device-log & Edge: edge://device-log)

See all passkeys in Chrome with chrome://settings/passkeys

https://www.corbado.com/
https://www.corbado.com/blog/webauthn-resident-key-discoverable-credentials-passkeys#resident-keys-non-resident-keys
https://www.corbado.com/blog/webauthn-relying-party-id-rpid-passkeys
https://www.corbado.com/blog/webauthn-relying-party-id-rpid-passkeys
https://www.corbado.com/blog/webauthn-conditional-ui-passkeys-autofill
https://www.corbado.com/blog/webauthn-conditional-ui-passkeys-autofill
https://www.corbado.com/blog/webauthn-conditional-ui-passkeys-autofill
https://www.corbado.com/blog/webauthn-conditional-ui-passkeys-autofill
https://www.corbado.com/blog/webauthn-conditional-ui-passkeys-autofill#full-conditional-ui-example
https://www.corbado.com/blog/webauthn-conditional-ui-passkeys-autofill#browser-compatibility-check
https://www.corbado.com/blog/webauthn-conditional-ui-passkeys-autofill#webauthn-autocomplete-token
https://www.corbado.com/glossary
https://www.passkeys-debugger.io
https://www.w3.org/TR/webauthn-2/#dictdef-authenticatorselectioncriteria

