
Ceremonies

Registration (attestation) Login (assertion)

Authentication with passkeys is based on the two processes, also called ceremonies, registration (aka the “attestation phase”) and login (aka the “assertion phase”). 
Each phase requires a random challenge generated by the server, which is signed by the authenticator and sent back to the WebAuthn server to verify the user. 

Passkeys Cheat Sheet - Overview
Everything you need to know about WebAuthn and passkeys

PublicKeyCredentialCreationOptions is the central object of the attestation phase (Registration). 
It is created by and returned from the WebAuthn server, containing these attributes�

� rp: Identifies the Relying Party (= the server looking to authenticate the user), usually the ID is the server domain�

� user: Contains data about the user account requesting attestation. The ID is a byte sequence chosen by the Relying 
Party, that must not contain personal information. The username or e-mail address is saved instead in the name or 
displayName attribute�

� challenge: A randomly generated base64URL encoded BufferSource that needs to be signed by the authenticator�

� pubKeyCredParams: Specified attributes of the credential to be created, usually the supported algorithm(s)�

� timeout: Optional time in milliseconds for the client to wait for the call to complete�

� excludeCredentials: Optional list of credentials to limit the creation of multiple passkeys on one device�

� authenticatorSelection: Optional selection of the used authenticator for the method, e.g. whether a residentKey is 
required. See the the next page of the cheat sheet for more information�

� attestation: Can be used to request that the attestation object is passed on to the Relying Party in a specific form. 
Possible values are “none” (default), “indirect”, “direct” and “enterprise”�

� extensions: Optional request(s) for additional processing, such as specific return values. e.g.½

Ë credProbs requests information on whether the created credential is discoverabl¬

Ë prf allows the Relying Party to use outputs from a pseudo-random function (PRF) associated with a credential

PublicKeyCredentialCreationOptions

PublicKeyCredentialRequestOptions

PublicKeyCredentialRequestOptions is the central object of the assertion phase (Login). 
It is created by and returned from the server, containing these attributes�

� challenge, timeout, extensions: see abov¬

� rpId: The identifier of the Relying Party for the assertion request, usually its domain�

� allowCredentials: Optional list of credentials that are allowed for authentication, indicating the caller’s preference by 
descending order. This list would be filled with PublicKeyCredentialDescriptors�

� userVerification: Optional value to specify requirements for user verification during the operation.  
Possible values are “preferred” (default), “required” or “discouraged”.


Attestation

WebAuthn Playground)During the Registration Ceremony, the Authenticator returns this Registration Response. (You can try this yourself in 

The attestationObject is a CBOR encoded object,  
containing information about the newly created credentials,  
the public key and other relevant dat�

� fmt is typically evaluated to “none” for passkey¶

� attStmt is empty for passkeys and filled for other 
authenticators, e.g. hardware security key¶

� authData is a buffer of values containing the following 
data:

Image used from www.w3.org/TR/webauthn-2

Passkeys are generated with COSE Algorithms, indicating the used algorithm in the algorithm-attribute of the 
parsedCredentialPublicKey:

The transports - property indicates mechanisms through which an authenticator can communicate with a 
client. Some common, sample value combinations are�

T� “transports”: [“internal”, “hybrid”]: Passkeys can be used from the platform authenticator (e.g. Face ID, 
Touch ID, Windows Hello) or via cross-device authentication (using QR code & Bluetooth9

5� “transports”: [“internal”]: Passkeys can be used from the platform authenticator (e.g. Face ID, Touch ID, 
Windows Hello9

Q� No “transports” property set: default behavior which gives no indications

Assertion
WebAuthn Playground)During the Login Ceremony, the Authenticator returns this Login Response. (You can try this yourself in the

The signature is used to verify that the user trying to log in, actually has the private key. It is created by 
concatenating the authenticatorData and clientDataHash (i.e. the SHA-256 version of ClientDataJSON) and 
signing the result with the private key (in the authenticator).  
To verify with the public key, we concatenate authenticatorData and clientDataHash as well. If the verification 
result returns true, the authentication is successful..

The userHandle is the actual user_id. Read more about the user_id in the “Database Schema” on the next page.

https://www.corbado.com/blog/passkey-tutorial-how-to-implement-passkeys#architecture-overview-passkey-example-implementation
https://www.corbado.com/blog/passkey-tutorial-how-to-implement-passkeys#architecture-overview-passkey-example-implementation
https://www.corbado.com
https://www.w3.org/TR/webauthn-2/#dictdef-publickeycredentialcreationoptions
https://www.w3.org/TR/webauthn-2/#dictdef-publickeycredentialrequestoptions
https://opotonniee.github.io/webauthn-playground/
https://www.w3.org/TR/webauthn-2/#attestation-object
https://www.w3.org/TR/webauthn-2/#attestation-object
https://www.corbado.com/blog/webauthn-passkey-qr-code
https://opotonniee.github.io/webauthn-playground/


Passkeys Cheat Sheet - Deep Dive
Everything you need to know about WebAuthn and passkeys

authenticatorSelection
The authenticatorSelection - object allows the WebAuthn server to request 
settings from the authenticator and for the credential creation.

There are two types of passkeys that differ in their storage and retrieval mechanismsp

{ Resident Keys (also called Discoverable Credential) 
Resident keys are stored on the authenticator and retrieved during authentication.  
This way the client can “discover” a list of possible keys, which is why Conditional 
UI requires resident keys�

{ Non-Resident Key (also called Non-Discoverable Credential) 
In case of non-resident keys, the credential ID is stored on the server and not on 
the authenticator. During each authentication, the authenticator derives the private 
key from a seed within the credential ID and an internal master key that is saved on 
the authenticator.

Resident Keys vs. Non-Resident Keys

Relying Party ID
The Relying Party ID (rpID) is a domain stored within the passkey, ensuring the 
passkey only works for the correct domain (browser URL, see this article for native 
apps). During authentication, the rpID is checked against the browser URL and only 
allowed in these two casesp

»� The browser URL matches precisely the rpID OÛ
¹� The browser URL is a subdomain that matches the rpID and the parent domain is 

not on the Public Suffix List


e.g.



Conditional UI - Overview
Conditional UI (“passkey autofill”) displays available passkeys in a selection dropdown for the user, when a user has a resident key registered with the relying party.  
It improves the usability of passkeys, but requires additional development efforts and is not available for all OS / browser combinations.

Login with Conditional UI Device Compatibility

Conditional UI - Implementation

Code Example Technical Requirements

Autocomplete Token in Input Fields

A full, minimalistic code for a Conditional UI method looks like this: Conditional UI only works with resident keys / discoverable credentials

It’s recommended to provide a different server endpoint to start the Conditional UI login.

The client needs to meet multiple requirementsp
Ú The browser needs to support Conditional UI (see the list aboveá
Ú JavaScript must be enabled and the web page must provide an HTML input fielÙ
Ú Timeout parameters should be disregarded


To avoid errors, the server should first test the client’s availability with this function:

The input field should receive an HTML autofill token, that signals the client to populate 
passkeys to the ongoing request. Besides passkeys, the autofill tokens can be paired 
with existing tokens, e.g. usernames and passwords:

Database Schema
There is no mandatory or standardized database schema for WebAuthn servers. However, this example database schema can be used to store the required information and provide all 
functionalities of a WebAuthn server. Bold attributes are mandatory for a minimal viable implementation, while the others are only needed for optional, but helpful features.

Authentication-relevant datax

{ Credential ID: 
This is a unique ID that’s generated by the authenticator during 
registration of a passkey. It should be used to look up the actual user 
account that’s associated with the passkey.  
Additionally the userHandle (from user_id) should then be compared to 
validate the account used for authentication. Don’t use the user.name 
attribute for comparison as it can change over time�

{ User ID (user_id) 
Unique ID specified by the Relying Party to represent a user account in 
their system. It’s returned as the userHandle within the assertion-object. 


Metadata for display and selection of passkeysx

{ User DisplayName (user.displayName) 
User-friendly, readable name that is typically the full name of the user.  
It’s shown to the user, but not used during authentication�

{ User Name (user.name) 
Unique and readable name that is typically an e-mail address or a 
username. It can be shown to the user, but it's not used during 
authentication. 

Passkey Glossary:

Chrome Device Log:


WebAuthn Playground:

WebAuthn Debugger: Tool for Debugging the WebAuthn Response as JSON.


Tool for testing WebAuthn operations with different options.


Explanation of passkey-related terms & concepts.


Log of your WebAuthn operations. 
(only on Chrome: chrome://device-log)

Helpful Tools
These are helpful tools that you can access by clicking on their title.

https://www.corbado.com/
https://www.corbado.com/blog/webauthn-resident-key-discoverable-credentials-passkeys#resident-keys-non-resident-keys
https://www.corbado.com/blog/webauthn-relying-party-id-rpid-passkeys
https://www.corbado.com/blog/webauthn-relying-party-id-rpid-passkeys
https://www.corbado.com/blog/webauthn-conditional-ui-passkeys-autofill
https://www.corbado.com/blog/webauthn-conditional-ui-passkeys-autofill
https://www.corbado.com/blog/webauthn-conditional-ui-passkeys-autofill
https://www.corbado.com/blog/webauthn-conditional-ui-passkeys-autofill
https://www.corbado.com/blog/webauthn-conditional-ui-passkeys-autofill#full-conditional-ui-example
https://www.corbado.com/blog/webauthn-conditional-ui-passkeys-autofill#browser-compatibility-check
https://www.corbado.com/blog/webauthn-conditional-ui-passkeys-autofill#webauthn-autocomplete-token
https://www.corbado.com/glossary
https://opotonniee.github.io/webauthn-playground/
https://debugger.simplewebauthn.dev/?
https://www.w3.org/TR/webauthn-2/#dictdef-authenticatorselectioncriteria

